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Abstract. A multiple scattering method is described for calculating extinction, absorption 
and scattering cross-sections for dielectric particles of arbitrary shape, whose dimensions 
are comparable to the wavelength of the incident radiation. Numerical application to 
spheres agrees well with the Mie theory. An extension for a collection of arbitrarily shaped 
particles with application to zodiacal light is also given. 

1. Introduction 

The Mie theory, which yields us exact solutions to the scattering of light by spherical 
particles (Mie 1908) has so far been generalised only to infinite cylinders (Kerker 1969) 
and spheroidal particles (Asano and Yamamoto 1975). An interesting approach to the 
light scattering by non-spherical particles is due to Purcell and Pennypacker (1973). 
The particle which scatters is compared to an array of polarisable elements located on a 
cubic lattice. In their model absorption, extinction and scattering cross-sections are 
obtained by numerical solution of a system of linear equations satisfied by the complex 
amplitudes of the dipole moments. 

In Q 2, taking up again the Purcell model for a particle of given shape, we present a 
method giving the various cross-sections by a multiple scattering development of the 
complex vector amplitude of each dipole moment. This method, numerically applied to 
spheres, gives results in good agreement with the Mie theory. 

In 0 3 we show that the intensity scattered by a collection of arbitrarily shaped 
particles is related to the two-particle correlation function. In Q 4 we give an application 
to zodiacal light. 

2. Multiple scattering method for a particle of given shape 

2.1 Iterative development 

Following Purcell and Pennypacker (1973) we treat a dielectric particle as an aggregate 
of N polarisable elements mounted on a cubic lattice. Each dipole is characterised by a 
complex electric polarisability connected to the refractive index m = n - ik by the 
Clausius-Mossoti relation (Van de Hulst 1957) 
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where n is the number of atoms per volume unit. Here we take n = do3, do being the 
spacing of dipoles on the cubic lattice. To generate a form consists of putting N dipoles 
on the sites of the lattice A. 

The complex vector amplitude d i  of the dipole moment of the ith entity is related to 
the electric field acting on the ith entity by 

d, = a,Ei. (2) 

Ei is composed of an external field, 

EPX'(x,, t )  = EOez exp[i(kxi) - wet)], (3) 

and the fields radiated by the other dipoles (Born and Wolf 1964), 

j # i  

where rij is the distance between the ith and jth dipoles. Edip(rir t - rij/c) can be written as 

Edip(ri, t - rij/c) = 1 T(rij) . dj ( 5 )  
j # i  

where 

(6) 
eikr 
r 

T(r) = T [ k 2 r 2 ( I  - $1 + (1 - ikr)(3@-1)], 

I being the unit tensor and ? =  r/lrl. 
We introduce the multiple scattering development of di, 

N 

j = l  
j P i  

di(xi, t )  = a,EOez exp[i(kxi - mot)] + a %  T(rij), ezEO exp[i(kxj -wot)l 

N N  
3 +a,  1 1 T(rij)T(rjl) e,Eoexp[i(kxl-wot)e+. . 

j = l  r = i  
j # i  r # j  

(7) 

We will now give the expressions for the absorption, extinction and scattering 
cross-sections and the expression for the differential scattering cross-section. 

2.2 Expressions for the various cross-sections 

The main energy absorbed by a dipole d, per unit time, in a complex representation is 
given by (Landau and Lifshitz 1952) 

Qabs = Re(d dE"/dt). (8) 

The absorption cross-section of the particle reads: 

with di given by (7). c is the speed of light. 
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The differential cross-section is given by 

where 

(1 1) 1 - 1  
d - 2 Re(Ediff A H%ff 1, 

q is the observation direction, and &iff (Hdiff)  is the electric (magnetic) scattered field 
obtained by summing the fields generated by the dipoles of the polarisable elements. 
Since the distance r separating the particle from the observer is large, we have 

eikr N 

&iff(f, t )  = k - [exp(-ikd. x i ) ] ( q  A di) A q r i = l  

and 

with kd = kq and di given by (7). 

section 
From the optical theorem (Born and Wolf 1964) we deduce the extinction cross- 

i = l  
(14) 

where d,,  = di(z ,  t ) .  
The scattering cross-section can be obtained by integrating the expression (10) for the 
differential cross-section on the angular variables or through the difference 

(15) addiff = a e x t  - aabs  

At zero order we have 

(aext)o = (aabs)O = -477(wo/c)N Im (ye.  

Putting q = (sin 8 cos 4, sin 8 sin 4, cos e), we obtain 
N d u  4rr 

-=--k41ael"( dR c i = l  1 exp(ikdz . x i )  

with kd, = k - kd, which we identify with the Rayleigh scattering. 

2.3 Numerical application 

In order to calculate practically the expressions (9), (lo), and (14) we introduce the 
recurrence formula 

= & + 1  c p  
{ a }  

where the summation means 



N N  4T (g) = - k41ae12(n+1’ Re { [ A ]  exp[ikd(xil - x i z ) ] ]  
n C  i l = l  i2=1 

In order to test the validity of the multiple scattering development we settled a 
computational method that we applied to spheres. For spheres of size parameters 
ka = 1 and ka = 1.5 with a refractive index m = 1.7 - O - l i ,  which are approximated by 
a cluster of 248 polarisable entities, our results are in good agreement with the Mie 
theory to approximately 1 YO. 

For ka = 1-5, we obtain 

1.951 4179, c a b s  = 0.599 096 67, c d i f f =  1.352 3212, 

whereas the Mie theory yields 

uext= 1,933 148 36, C a b s =  0.597 818 05, Cdif f=  1.335 330 31. 

These results have been obtained after twenty iterations. The multiple scattering 
series decreases very fast with y1 ; for instance, after ten iterations we already get a good 
approximation to the final result. The computing time is around 1 mn on a CDC 7600. 
For a comparison, the Yung method (Yung 1978), which yields an accurate numerical 
treatment in solving the set of simultaneous equations for dipole amplitudes by means 
of a variational principle, requires the number of dipoles to be very large ( N  = 4872 for 
x = 1.5) and a computing time around N2mn on a CDC 7600. 
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3. Extension to a collection of arbitrarily shaped particles 

We search for the intensity scattered by a collection of arbitrarily shaped particles in a 
scattering volume V. 

Taking the origin at the centre C of the particles, we have shown in § 1 that the 
scattered field is given by 

Now, if we take 0 as an origin, the scattered field becomes 

N eikr 
i = l  r &(r, t )  = k 2  exp (-ikd. x i ) [ ( v  A d i )  A 771- exp(-iwot) exp(iK. r i )  

with K = k - kq'. r is the distance separating the origin 0 from the observer, ri the 
distance OC, and 2' = r/lrl. 
We put 

eikr 
r 

&(r', t )  = Ff- exp(-iwot) exp(iK. r i )  

with 
N 

F' = 1 k 2  exp(-ikd. x i ) [ ( r j  A d i )  A 771. 
i = l  

If nf(ri, t - r / c )  is the density of particles of shape f the electric field scattered by a 
collection of particles is defined by 

eikr . 
&d(r, t )  = - e - l w O r  Fin,( ri, t - f) exp(iK. r i )  dri. (28) r 

Taking the Fourier transform of n(r ,  t ) ,  

E(k, t )  = n(r,  t )  eik"d3r, I 
we obtain 

eikr 
&d(r, t )  = - r 

The scattered intensity calculated in the direction q' is given by the expression 
(Crosignani et a1 1975) 

x 1 CF~F? exp[iK. (ri -rj)](n,(ri, r - r/c + 7)nf(rj ,  t - r/c)) .  (31) 
f f '  

The mean value in (31) is related to the dynamical properties of the scattering particles, 
and will be discussed in the next section. 
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4. Application to zodiacal light 

Following the work of Le Sergeant and Lamy (1978) on the interplanetary grains, the 
zodiacal particles can be divided into two populations: one consisting of particles whose 
dimensions are comparable to the incident wavelength and the other consisting of 
particles whose size is higher than the incident wavelength. For the first population Ff is 
well described by our multiple scattering approach. For the second population Ff can 
be satisfactorily described by an eikonal approach (Chiappetta 1980). 

We will now calculate (nf(r i ,  t - r /c  + T)nf(ri ,  t - r /c ) ) .  
Two types of forces are acting on the zodiacal particles: (a) the gravitational force 

and the radiation pressure, and (b) the Lorentz force due to the electric and magnetic 
fields of the solar wind. We recall that nf (r ,  t - r / c )  is given by the Vlasov equation 

where 

n = f d3v. I 
G is the gravitational constant, M the solar mass, q and m the particle charge and mass, 
and E ( B )  the electric (magnetic) field in a frame moving with the solar wind. 

According to Jokipii (1971) and Jokipii and Owens (1974) the magnetic field is: 

B, = Bp, B, SBe,  

B y  = -6B, sin rC, - 6B4 cos rC,, (33) 

where B p  is the Parker field. We have E = - w A B where w is the solar wind velocity. rC, 
is the angle between r and B. The 6Bi are the fluctuant components of the magnetic 
field. We seek for the solution of (33) in the form 

f = f o f f 1  (34) 

where f o  is the solution corresponding to the Parker field andfl  is the solution due to the 
fluctuations of the electric and magnetic fields. 

We obtain 

C is determined by the condition no(r)  = fo(r ,  U )  d3 v proportional to r-" with 1 i U s 
1.3  according to the different models. To the density no(r)  we must add the density due 
to fluctuations, 

(36)  

where f l  is the solution of the equation 

We solve (37)  by observing that the Lorentz force can be treated perturbatively 
compared to the gravitational force. After a tedious calculation, the value (ISn"(K, w - 
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related to I ( w ,  q') is expressed by 

with 

and the scattered intensity is proportional to the Fourier transforms of the magnetic 
field correlation functions (Bi(t)Bi(t + 7)). 

From the expression (38) let us make two remarks. We can first evaluate the 
intensity width AA due to fluctuations. For visible and ultraviolet spectra lw, and kilwil 
are negligible. At a heliocentric distance r = l au  the zodiacal grains velocity is about 
30 km s-'. For an incident wavelength A. = 0 . 5 ~  and a scattering angle 8 = T we obtain 
AA = 0 - 8  A. 

The expression (38) can be separated into two terms. The first, which does not 
contain the correlation functions, is strongly peaked for w = wo;  the second term, 
proportional to the electric and magnetic field correlation functions, is maximal for 

The expression (38) has been calculated above for a given incident wavelength and a 
heliocentric distance. Now in order to relate (38) to astronomical measurements we 
must integrate over all the solar spectrum wavelengths ho and the line of sight. 

If we perform the integration over Ao, the first term of (38) will give a scattered 
spectrum very close to the solar incident spectrum. 

Let us notice that to integrate the second term for a given scattered wavelength A,, 
we must take -011 and + Q  as the limits of integration; a possible result would be a slight 
increase of scattered intensity in the ultraviolet domain. 

w -wo = *all. 

5. Conclusion 

The model which has been described allows us to calculate by a simple computational 
method the contribution of transition multipoles to the light scattering by a dielectric 
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particle of irregular shape. This method can be generalised to particles containing 
impurities of one or several types and to inhomogeneous grains, each constituent or 
impurity corresponding to a different polarisability. 

The model can also be generalised to particles having a non-negligible magnetic 
polarisability C Y ,  connected to the magnetic permeability ,U' by 

The complex vector amplitude of the magnetic moment of the ith entity pi is related 
to the magnetic field acting on the ith entity by 

The magnetic field Hi is composed of the external field and the fields radiated by the 

We mention that the polarisation can also be calculated using this method. In that 
other magnetic dipoles. 

case we take two incident fields, 

In conclusion, this multiple scattering approach can be applied to light scattering by 
a collection of arbitrarily shaped particles. The complexity of the scattering theory in 
this case is related to the statistical knowledge of the dynamical properties of the 
scattering particles. 
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